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I. Introduction 
Recent investigations of potential energy surfaces1,2 have re­

vealed some very interesting trends and similarities in the shapes 
of different kinds of clusters. Furthermore, the relationships 
between the different systems are not confined to shape alone; 
similarities in topology of potential energy surfaces also imply 
relationships in the dynamical processes that the systems exhibit. 
For example, it was found that most of the low-energy rear­
rangements exhibited by argon and "trapped ion" clusters can be 
described in terms of Lipscomb's diamond-square-diamond 
mechanism3 (both systems) or Johnson's edge-bridging mecha­
nism4 (argon clusters only). Such results are of great importance 
in developing a detailed understanding5 of the liquid/solid coex­
istence behavior of small argon clusters,6 which draws a pleasing 
parallel with the rationalization of rearrangement rates in clo-
io-boranes and carboranes. For the latter systems a topological 
analysis7 must be augmented by considerations of orbital sym­
metry8 to obtain a complete picture. 

Since part of the purpose of this paper is to discuss the simi­
larities and common features of the stationary structures exhibited 
by different clusters, it will serve us well to introduce some no­
menclature. We divide clusters into three classes: (1) covalent 
clusters (those taken to be such species as boranes, carboranes, 
and transition-metal clusters); (2) van der Waals clusters (those 
that include clusters of inert gas atoms such as argon as well as 
benzene clusters and any other systems in which the binding energy 
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is primarily due to dispersion forces); and (3) ionic clusters (those 
that include binary alkali halides such as (KCL)n as well as 
"trapped ion" clusters; the latter species consist of identical ions 
held in an attractive well potential9, which for the present cal­
culations is isotropic and harmonic in form).1 This scheme may 
not always be unambiguous, but it will generally be helpful in 
distinguishing different types of systems in the present work. 

In 1957 Leech deduced the conditions for a set of particles 
confined to the surface of a sphere to be in equilibrium under any 
pairwise law of force;10 his geometrical proof enabled all such 
"balanced" structures to be identified. The necessary and sufficient 
condition for a structure to be balanced in this sense is that every 
particle must lie on a rotational axis of the appropriate point 
group.10 Balanced structures fall into two classes: (1) all particles 
equally spaced on a great circle with or without two identical 
particles at the poles; (2) the particles define the vertices, centers 
of faces, or mid-points of edges of a regular polyhedron, or any 
of the three sets taken together. In this report the concept of a 
balanced structure is extended to systems with arbitrary force laws 
(which need not be pairwise additive) and to the tangential 
equilibrium (i.e. the shape) of molecules where the atoms describe 
more than one orbit of the point group. An orbit of a point group 
is a complete set of equivalent points that is mapped onto itself 
(aside from permutations) under all the point group operations. 
The conclusions are investigated by a series of calculations on a 
wide variety of different clusters, including a comprehensive survey 
of stationary points for argon clusters containing 4 to 55 atoms 
with use of two different potential functions. These results are 
of interest in dynamical studies of argon clusters where the simpler 
Lennard-Jones potential is usually employed. The trends that 
emerge for the two potential functions are discussed in terms of 
the two-body and three-body contributions; the use of the Len­
nard-Jones potential should be generally justifiable for dynamical 
studies as it does not misrepresent the important features of the 
potential energy surface in any of the cases studied. Finally, the 
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relation of structural trends in different clusters to the qualitative 
form of the potential functions is discussed. The origins of 
structural isomorphisms and of diversity in clusters can generally 
be related to familiar chemical concepts, although the change in 
the order of stationary points with the same geometry is less well 
understood. The latter will be the subject of a separate report." 
Knowledge that a stationary point of some order is bound to exist 
for a particular geometry may serve to guide future ab initio 
studies as well as structural investigations of conceptually simpler 
ionic and van der Waals clusters. 

II. Balanced Structures 
We first review Leech's most important result, namely that 

systems of points confined to a spherical surface are in equilibrium 
under any pairwise force law if there is a rotation axis through 
each one. First notice that we will not be concerned with radial 
forces. The latter do not affect the shape of the system but instead 
determine whether or not there can be a bound stationary point 
at all. It is reasonable to assume that practically all systems of 
chemical interest do indeed have such a bound state, as we shall 
see. 

Before extending the basic result let us consider a simple 
geometrical proof that subsumes Leech's approach. We will show 
that angular equilibrium exists for any pairwise resolvable force 
if every point lies on a rotational axis. The centers for the forces 
do not in fact have to be on the other atoms, so long as the former 
are an orbit of the point group. Consider any point,;', which lies 
on a rotation axis of order n. The remaining points must be 
arranged in rings of n or In equivalent sites in planes that are 
perpendicular to the rotation axis through i. {In equivalent points 
can arise, for example, in the DnJ and Dnn point groups when the 
atoms do not lie on the perpendicular rotation axes.) Any other 
points that lie on the same rotational axis clearly contribute no 
tangential force at point i. The force on atom i due to any of the 
n or In equivalent sites in a ring can be decomposed into two 
orthogonal tangential components, and the net force along both 
these arbitrary directions vanishes because 

Table I. Point Groups and Their Tangentially Balanced Orbits, On' 

cos (2rmc/n) 

sin (Im-x/ri) 
= 0 

which follows from summing the geometric progression 
n-\ 
V* glmrijn 

m-0 

and taking the real and imaginary parts. 
Since no assumptions were made about the radii of the sets of 

equivalent points we can immediately generalize this result to 
structures containing more than one orbit of the required type, 
where again the particles interact by pairwise decomposable forces. 
Here we assume that suitable radial distances for the different 
orbits exist so that the stationary point is bound. This is clearly 
the case for ligated clusters such as cubane, C8H8, and icosahedral 
B12H|22~. Here we may also include structures consisting of a 
regularly spaced ring of atoms with two equivalent polar atoms, 
such as pentagonal bipyramidal Ar7. However, the polar atoms 
do not have to lie on the same sphere as the atoms in the equatorial 
ring and do not even have to be the same kind of atoms at all. 
Many more detailed examples will be given in the next section. 
First, however, we use group theory to show that the results are 
actually applicable to systems with arbitrary force laws, not just 
to pairwise additive potentials. Hence we may treat covalent 
clusters on the same footing as systems governed by purely ionic 
forces, for example. This was implicitly assumed in the examples 
given for two-orbit systems above. 

A symmetry analysis is needed to encompass general force laws, 
including systems that must be treated quantum mechanically, 
such as borohydrides and most transition-metal clusters. The 
components of the gradient of the energy, dE/dQh where Q1 is 
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" n is the number of equivalent sites in the oribt. These are simply 
the orbits for which the tangential unit vector representation12 does not 
contain the totally symmetric irreducible representation of the point 
group. O1 is omitted for brevity except for the groups where it is the 
only balanced orbit. 

a Cartesian displacement coordinate of any atom, clearly form 
a basis for a representation of the molecular point group. In fact, 
the subset of components including only displacements of atoms 
in any orbit also forms such a basis, because only these components 
are transformed into one another under operations of the point 
group. For a nondegenerate electronic state the expectation value 
of this gradient vector vanishes unless it contains a part that 
transforms as the totally symmetric irreducible representation of 
the point group, T0. If the vector vanishes then so do its com­
ponents, so that if there are to be nonvanishing forces on sets of 
equivalent atoms then the basis set \dE/dQi\ must contain T0. If 
we divide the local displacements Q1 into radial and tangential 
components then it is clear12 that the representation spanned by 
the former always includes T0. However, if the representation 
spanned by the tangential components does not contain T0 then 
the orbit is in tangential equilibrium for an arbitrary force law 
and is therefore balanced. 

Fowler and Quinn have tabulated the transformation properties 
of a set of tangential unit vectors for the orbits of all the chemically 
important point groups.12 Only the orbits that do not contain T0 
in the tangential unit vector representation can form part of a 
balanced structure. These orbits are the same as those deduced 
by Leech's geometrical construction and are summarized in Table 
I. 

In the following sections we will address several questions that 
immediately come to mind. First, in section III, a series of example 
calculations are presented that include stationary points of order 
zero (minima), order one (true transition states13), and a number 
of higher order saddles. Throughout this paper we associate the 
order of a stationary point or saddle point with the number of 
negative eigenvalues of the Hessian or second derivative matrix 
at that geometry. Then, in section IV, a systematic survey of 
stationary points of various orders is presented for a range of more 
than 50 different argon cluster geometries with 4 to 55 atoms. 
In section V we examine the important question of how the 
qualitative nature of the potential governs the order of the balanced 
stationary points and how it affects the types of unbalanced 
structures that are minima for different types of clusters. These 
questions are clearly of fundamental importance in understanding 
structural trends and reaction dynamics in all branches of cluster 
chemistry, and the present theoretical framework provides a unified 
viewpoint in which to frame such studies. We also note that this 
framework may be extended to higher derivatives of the energy 
to identify the maximum number of independent non-zero com­
ponents. The detailed proofs will be presented elsewhere, along 
with some applications to ab initio chemistry. 

(U) Braier, P. A.; Wales, D. J.; Berry, R. S. / . Chem. Phys. In press. 
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Table II. Examples of Balanced Structures for Covalent, Ionic, and van der Waals Clusters" 
point group; orbit 

Dih\ O3 
D-h O2, O, 
T/. O4 
D^ O4 
Di„\ O3, O2 
Dsh; O5 
0,,O, 
D^ O6 
Dih\ O5 
Dn: O7 
0h;0, 
D6h\ O6, O2 
/*; On 
0h\ O12 
h: O12, O1 

/*; O20 

/*; O30 
/„; O20, O12, O1 

structure 
equilateral triangle 
linear 
tetrahedron 
square 
trigonal bipyramid 
pentagon 
octahedron 
hexagon 
pentagonal bipyramid 
heptagon 
cube 
bicapped hexagon 
icosahedron 
cuboctahedron 
centered icosahedron 
dodecahedron 
icosidodecahedron 
centered, stellated icosahedron 

examples 
Ar3 [O]", (Be+V3 [0]», (CH)J [O] 
HO=COsCH [O] 
Ar4 [O]0, (Be+)4 [O]0, (BCl)4 [O], P4 [O] 
Ar4 [2]°, (Be+)Ul]0 

Ar5 [O]", Be+V5 [O]", C5H
+ [5]», C5Hl [5]" 

Ar5 [4]", (Be+)1S [2]«, C5H; [O] 
Ar6 [O]", (Be+Y6 [O]", B6H6

2" [0] 
Ar6 [6]", (Be+J6 [4]«, C6H6 [0] 
Ar7 [O]", (Be+)1, [O]", B7H7

2" [0] 
Ar7 [8]», (Be+V7 [6]« 
Ar8 [6]°, (Be+V8 [2]", C8H8 [0] 
Ar8 [3]«, (Be+V8 [3]° 
B12H12

2" [0] 
Ar12 [6]«, (Be+V12[I]", B12H12

2- [4]» 
Ar13 [O]", (Be+V13 [O]" 
C20H20 [0] 
Ar30 [24]" 
Ar30 [O]" 

"The order of each stationary point is given in brackets after the formula, and the orbits of the point group present are noted in the first column. 
Superscript a denotes calculations performed with the Cerjan-Miller method' (some of the results are also known from earlier work14); superscript b 
denotes ab initio calculations performed with CADPAC22 using STO-3G basis sets; the other structures are well-known minima. (Be+)), clusters are 
systems containing n Be+ ions contained by a central harmonic potential. 

III. Some Examples of Balanced Structures 

The calculations that led to some of the trends reported herein 
first coming to the author's attention have been reported else­
where.1 The objective of the latter study was primarily to calculate 
transition-state geometries and thereby relate dynamical processes 
(as simulated by the method of molecular dynamics) to details 
of the potential energy surfaces. Finding minima on potential 
surfaces is a much easier task; for example, a wide variety of 
minima have been well-known for argon clusters for some time.14 

Some of the transition states for Ar7 were recently calculated by 
using the "Slowest Slides" technique adapted from the metho­
dology of molecular dynamics.15 However, a much wider set of 
results has since been obtained on applying the Cerjan-Miller 
eigenvector-following method16 to ionic and van der Waals 
clusters.1 These calculations will be used in forth-coming reports 
of dynamical processes for potassium chloride,17 "trapped ion",18 

bare metal clusters," and argon clusters," as well as in a study 
of the Carter-Handy potential surface20 for formaldehyde in which 
we compare the behavior of the Cerjan-Miller and Slowest Slide 
approaches.21 

The results reported in this section were obtained by using the 
Cerjan-Miller method in the case of ionic and van der Waals 
clusters and with the CADPAC ab initio package22 for the covalent 
clusters. For the latter systems all the calculations were symmetry 
constrained so that they could be run as minimizations. CADPAC 
performs well under these conditions, whereas it does not seem 
to locate transition states for clusters of similar sizes in uncon­
strained searches very readily.23 It is interesting to note that we 
are sure to find a stationary point of some variety in each case, 
although the order of the stationary point may vary depending 
upon the basis set and the charge on the cluster. All the results 

(14) Hoare, M. R.; Pal, P. J. Cryst. Growth 1972, 17, 77. 
(15) Berry, R. S.; Davi« H. L.; Beck, T. L. Chem. Phys. Lett. 1988,147, 

13. 
(16) Cerjan, C. J.; Miller, W. H. J. Chem. Phys. 1981, 75, 2800. Sim­

mons, J.; Jorgenson, P.; Taylor, H.; Ozment, J. J. Phys. Chem. 1983,87, 2745. 
O'Neal, D.; Taylor, H.; Simmons, J. J. Phys. Chem. 1984,88, 1510. Baker, 
J. /. Comp. Chem. 1986, 7, 385. Baker, J. J. Comp. Chem. 1987, 8, 563. 

(17) Rose, J.; Berry, R. S.; Wales, D. J. To be published. 
(18) Rafac, R.; Schiffer, J. P.; Wales, D. J. In preparation. Rafac, R.; 

Schiffer, J. P.; Hargst, J.; Dubis, D.; Wales, D. J. Proc. Natl. Acad. Sci. 
U.S.A. Submitted. 

(19) Wales, D. J.; Berry, R. S. J. Chem. Phys. 1990, 92, 4283. 
(20) Handy, N. C; Carter, S. Chem. Phys. Lett. 1981, 79, 118. 
(21) Davis, H. L.; Wales, D. J.; Berry, R. S. J. Chem. Phys. 1990, 92, 

4308. 
(22) Amos, R. D.; Rice, J. E., CADPAC: Cambridge Analytic Derivatives 

Package, Issue 4; Cambridge University: Cambridge, England, 1987. 
(23) Wales, D. J. Unpublished studies. 

Figure 1. Two views of the Ar30 icosidodecahedron; Ox in /* is the largest 
balanced orbit of any point group normally encountered. 

in Table II were found with use of minimal STO-3G bases. 
For the ionic and van der Waals clusters minima and transition 

states were generally located with unconstrained searches as 
described elsewhere.1 However, the package adapted for these 
calculations24 also allows for symmetry contraints that were em­
ployed to find the higher order saddles. Results for a variety of 
systems, some familiar and some hypothetical, are given in Table 
II. Examples are provided for all the orbits of the cubic groups, 
and since the icosidodecahedron will probably not be known to 
most readers it is illustrated in Figure 1. The trends that emerge 
in this section and in section IV are discussed in section V. The 
results show that we can indeed find stationary points of some 
order for molecules with balanced geometries, whatever the nature 
of the bonding. Only if the potential is repulsive (or the electronic 

(24) ACES (Advanced Concepts in Electronic Structure)—An Ab Initio 
Program System, authored by Bartlett, R. J.; Purvis, G. D.; Fitzgerald, G. 
B.; Harrison, R. J.; Lee, Y. S.; Laidig, W. D.; Cole, S. J.; Trucks, G. W.; 
Magers. D. H.; Salter, E. A.; Sosa, C; Rittby, M.; Pal, S.; Stanton, J. F. 
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wavefunction is degenerate) for any size of the cluster with the 
given shape will there not be a stationary point for finite cluster 
size. 

IV. Systematic Study of Stationary Points for Two Argon 
Potentials 

The minima and transition states reported previously1 were all 
computed with a Lennard-Jones potential25 
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flsr-fen V = 4 t L 

where rt, is the distance between atoms /' and./, < is the well depth, 
and CT is the pair separation for which V^r11) vanishes. While this 
potential is widely used it is known that the actual interactions 
between argon atoms are significantly different from those de­
scribed by the above form.26 However, potentials including three-
as well as two-body interactions are available for which calculated 
properties of solid, liquid, and gaseous argon are in very good 
agreement with experiment.27 The more accurate potential em­
ployed for this study utilized the two-body form of Barker and 
Pompe28 

V1 = ,T. e 12.5(1-Py)J0 2349 _ 4.7735(pi;. _ | ) _ 

10.2194(P17- I)2 - 5.2905(p,y- I)3I -
1.0698 

0.01 + p,j6 

0.1642 0.0132 

0.01 + Pi/° 0.01 + Pi/ 

where the well depth < = 2.040 X 10"14 erg (1 erg = 1 X 10"' J) 
and Pij is the separation of atoms i and j divided by the separation 
at the equilibrium distance for the argon dimer described by this 
function, which is 3.7560 A. For the three-body term the Ax-
ilrod—Teller triple-dipole form was used29 

1 + 3 cos 0, cos B2 cos O3 
V\ = v T. : , 

where v = 73.2 X 10H2 erg A ' and the R1 and 8, are the side lengths 
and internal angles of the triangle ijk, respectively.27 This in­
teraction is generally destabilizing for triangles with only acute 
angles and stabilizing otherwise. Quantum corrections of the type 
applied by Barker, Fisher, and Watts27 were not included as they 
are not expected to change the results significantly. 

The overall form chosen for the potential was governed by two 
considerations: first, a desire to compare the Lennard-Jones results 
with a more accurate potential including three-body corrections, 
and second, computational practicality. For clusters of the size 
of Ar55 optimizations become rather expensive, so that a com­
promise must be found between accuracy and complexity. The 
neglect of three-body terms other than the triple-dipole is a sensible 
step, as demonstrated by Etters and Danilowicz's previous cal­
culations.30 The latter work serves as a helpful check on the 
present calculations which include a much wider range of 
structures and, of course, stationary points of higher order. 
Optimizations for clusters as large as Ar55 were feasible with use 
of analytic gradients and Hessians for the Lennard-Jones potential 
and analytic gradients combined with two-sided numerical dif­
ferentiation for the Hessian in the case of the more complicated 
potential. Only the calculations of saddles of order two or more 
involved any constraints, and all the results were checked by 
examining the eigenvalues of the full Cartesian Hessian. The 

(25) Lennard-Jones, J. E. Proc. R. Soc. A 1924, 106, 463. 
(26) Guggenheim. E. A.; McGlashan, M. L. Proc. R. Soc. A 1960. 255. 

456. McGlashan. M. L. Discuss. Faraday Soc. 1965. 40. 59. 
(27) Barker. J. A.; Fisher. R. A.; Watts. R. O. MoI. Phys. 1971. 21. 657. 
(28) Barker, J. A.; Pompe, A. Aust. J. Chem. 1968, 21. 1683. 
(29) Axilrod. B. M.; Teller, E. J. Chem. Phys. 1943, / / . 299. Axilrod, B. 

M. J. Chem. Phys. 1949, II. 1349. Axilrod, B. M. J. Chem. Phys. 1951.19. 
719. 

(30) Etlers, R. D.; Danilowicz, R. J. Chem. Phys. 1979, 71, 4767. 

^ x 
W* 

Figure 2. Structures that are transition states for the Lennard-Jones 
potential but not for the more accurate many-body potential described 
in the text. Note that in every case an edge-bridging atom is present. 

magnitudes of the six "zero" eigenvalues and the number of 
negative eigenvalues enable the convergence of the calculation 
and the order of the stationary point to be monitored.' 

The results are tabulated in Table III for a Lennard-Jones 
potential with the same well depth,« = 2.040 x 10"14 erg, as for 
the Barker-Pompe two-body interaction. The Lennard-Jones 
energies can, of course, be rescaled for an arbitrary well depth 
(' by multiplying by <'/«• The present choice is appropriate for 
comparison with the chosen many-body form in order to highlight 
the effects of the three-body interactions. These are two distinct 
points for discussion in these results: (1) comparison of the 
stationary points and their orders with the two different potentials; 
and (2) analysis of the detailed energetic changes of the equivalent 
stationary points (where they exist). It is important to realize 
that the values of the particular Lennard-Jones < and a parameters 
are irrelevant to the discussion of point 1, that is, they play no 
part in determining the topology of the Lennard-Jones potential 
surfaces. On the other hand, in analyzing the detailed energetic 
differences between equivalent stationary points it is appropriate 
to consider a Lennard-Jones poential with the same well depth 
as the two-body Barkcr-Pompc form so that the effects of the 
three-body terms arc not obscured. The choice of the Lennard-
Jones IT was only significant in that the optimizations with the 
many-body potential were started from the corresponding Len­
nard-Jones geometries. Using a pair equilibrium separation some 
1.6% larger than that of the Barker-Pompe form allowed for some 
structural relaxation and generally resulted in efficient convergence 
to the equivalent stationary points with the more complex potential. 

Consider first the changes in topology of the potential energy 
surfaces, for which the Lennard-Jones scaling parameters play 
no part. All of the reoptimized stationary points have the same 
order with the two different potentials, except that in three cases 
the stationary point disappears completely. The latter geometries 
arc all of the edge-bridging type4 and arc illustrated in Figure 
2. To check whether the two-body or the three-body part of the 
potential is responsible for these results reoptimization was at­
tempted with the two-body term only. Again no stationary point 
was found in each case. Since all the reoptimizations were started 
from the converged Lennard-Jones geometries corresponding to 
a very similar equilibrium pair separation, this strongly indicates 
that these particular stationary points simply are not present for 



7912 J. Am. Chem. Soc, Vol. 112, No. 22, 1990 Wales 

Table III 
X IQ-'4 

Energies (IO'3 erg) for Various Calculated Stationary Points of Argon Clusters Using a Common Pair Potential Well Depth of 2.040 

erg" 
structure 

Ar4 square 
Ar5 trigonal bipyramid 
Ar5 square-based pyramid 
Ar5 pentagon 
Ar6 hexagon 
Ar7 pentagonal bipyramid 
Ar7 capped octahedron 
Ar7 tricapped tetrahedron 
Ar7 bicapped trigonal bipyramid 
Ar7 saddle l.2.a 
Ar7 saddle 1.2.b 
Ar7 saddle 1.2.c 
Ar7 saddle 1.2.d 
Ar7 saddle 1.2.e 
Ar7 saddle 1.2.f 
Ar7 saddle 21.2.e 
Ar7 saddle 21.2.d 
Ar7 heptagon 
Ar8 capped pentagonal bipyramid 
Ar8 dodecadeltahedron 
Ar8 C2l!-bicapped octahedron 
Ar8 stellated tetrahedron 
Ar8 cube 
Ar8 bicapped hexagon 
Ar8 saddle 1.4.A 
Ar8 saddle 1.4.B 
Ar8 saddle 1.4.C 
Ar8 saddle 1.4.D 
Ar1 saddle 1.4.E 
Ar8 saddle 1.4.F 
Ar12 cuboctahedron 
Ar13 icosahedron 
Ar13 1.6.B 
Ar13 1.6.C 
Ar13 1.6.D 
Ar13 1.6.E 
Ar13 1.6.F 
Ar13 saddle 1.9.A 
Ar13 saddle 1.9.B 
Ar13 saddle 1.9.C 
Ar13 saddle 1.9.D 
Ar13 saddle 1.9.E 
Ar n saddle 1.9.F 
Ar!4 capped icosahedron 
Ar,4 saddle 1.9.G 
Ar14 saddle 1.9.H 
Ar14 saddle 1.9.1 
Ar14 saddle 1.9.J 
Ar30 icosidodecahedron 
Ar33 centered stellated icosahedron 
Ar33 1.10 
Ar33 saddle 1.10 
Ar55 Mackay icosahedron32 

Ar55 minimum 1.11 
Ar55 minimum 2.2 
Ar55 minimum 2.3 
Ar55 minimum 2.4 
Ar55 minimum 2.5 
Ar55 saddle 1.11 
Ar55 saddle 2.2 
Ar55 saddle 2.3 
Ar55 saddle 2.4 
Ar55 saddle 2.5 

Eu 
-0.9139 
-1.857 
-1.730 
-1.134 
-1.334 
-3.367 
-3.251 
-3.182 
-3.169 
-3.118 
-3.066 
-3.151 
-3.125 
-2.978 
-2.968 
-3.067 
-3.080 
-1.535 
-4.043 
-4.032 
-3.915 
-3.871 
-3.117 
-3.615 
-3.934 
-3.748 
-3.862 
-3.758 
-3.816 
-3.908 
-5.906 
-9.043 
-8.454 
-8.445 
-8.460 
-8.067 
-8.076 
-8.345 
-8.254 
-8.246 
-8.048 
-8.288 
-8.023 
-9.761 
-9.374 
-9.601 
-9.352 
-8.760 

-14.50 
-29.06 
-28.60 
-28.14 
-56.90 
-55.52 
-56.43 
-55.79 
-56.38 
-55.84 
-54.10 
-55.08 
-55.70 
-56.15 
-55.71 

^MB 

-0.8779 
-1.801 
-1.663 
-1.085 
-1.287 
-3.216 
-3.091 
-3.038 
-3.032 
-2.961 
-2.910 
-2.982 
-2.965 

-2.911 
-2.921 
-1.490 
-3.843 
-3.785 
-3.712 
-3.672 
-2.854 
-3.414 
-3.707 
-3.543 
-3.623 
-3.555 
-3.600 
-3.697 
-5.422 
-8.376 
-7.854 
-7.850 
-7.858 
-7.530 
-7.496 
-7.707 
-7.619 

-7.482 
-7.657 
-7.437 
-9.026 
-8.621 
-8.869 
-8.602 
-8.097 

-13.38 
-25.59 
-25.59 
-25.13 
-50.22 
-49.03 
-49.71 
-49.22 
-49.69 
-49.25 
-47.62 
-48.50 
-49.10 
-49.48 
-49.08 

AE 

-0.036 
-0.056 
-0.067 
-0.049 
-0.047 
-0.151 
-0.160 
-0.144 
-0.137 
-0.157 
-0.156 
-0.169 
-0.160 

Vi 

-0.8853 
-1.848 
-1.701 
-1.089 
-1.288 
-3.322 
-3.187 
-3.131 
-3.123 
-3.049 
-2.994 
-3.070 
-3.053 

stationary point disappears 
stationary point disappears 

-0.156 
-0.159 
-0.045 
-0.200 
-0.247 
-0.203 
-0.199 
-0.263 
-0.201 
-0.227 
-0.205 
-0.239 
-0.203 
-0.216 
-0.211 
-0.484 
-0.667 
-0.600 
-0.595 
-0.602 
-0.537 
-0.580 
-0.638 
-0.635 

-2.995 
-3.006 
-1.488 
-3.972 
-3.899 
-3.829 
-3.789 
-2.912 
-3.513 
-3.828 
-3.650 
-3.734 
-3.659 
-3.712 
-3.818 
-5.555 
-8.758 
-8.810 
-8.173 
-8.181 
-7.819 
-7.496 
-8.022 
-7.925 

stationary point disappears 
-0.566 
-0.631 
-0.586 
-0.735 
-0.753 
-0.732 
-0.750 
-0.663 
-1.12 
-3.47 
-3.01 
-3.01 
-6.68 
-6.49 
-6.72 
-6.57 
-6.69 
-6.59 
-6.48 
-6.58 
-6.60 
-6.67 
-6.63 

-7.768 
-7.969 
-7.715 
-9.431 
-8.984 
-9.265 
-8.962 
-8.401 

-13.56 
-27.24 
-26.79 
-26.31 
-52.96 
-51.58 
-52.42 
-51.86 
-52.39 
-51.90 
-50.09 
-51.06 
-51.74 
-52.16 
-51.71 

V, 

0.007357 
0.04738 
0.03780 
0.004158 
0.0008364 
0.1064 
0.09620 
0.09280 
0.091022 
0.08738 
0.08370 
0.08817 
0.08812 

0.08382 
0.08531 

-0.002051 
0.1291 
0.1137 
0.1167 
0.1173 
0.05858 
0.09822 
0.1210 
0.1066 
0.1105 
0.1043 
0.1126 
0.1214 
0.1326 
0.3822 
0.3261 
0.3233 
0.3260 
0.2891 
0.2891 
0.3148 
0.3063 

0.2862 
0.3117 
0.2776 
0.4051 
0.3623 
0.3961 
0.3603 
0.3035 
0.1820 
1.325 
1.204 
1.173 
2.748 
2.551 
2.703 
2.640 
2.698 
2.647 
2.469 
2.559 
2.637 
2.682 
2.633 

order 

2 
0 
1 
4 
6 
0 
0 
0 
0 

8 
0 
0 
0 
0 
6 
3 

6 
0 
0 
0 
0 
0 
0 

0 

24 
0 
0 
1 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 

° Eu and £MB are the results for the Lennard-Jones and the more complicated many-body potential described in the text. V1 and Vt are the 
two-body and three-body contributions to the total energy for the latter potential, and AE = Eu- £MB. The order of the stationary points, which 
is unchanged unless it disappears completely, is given in the last column. To avoid reproducing all the structures references are given to figures in 
earlier papers for all the unnamed geometries. For example, 21.2.h means ref 21, Figure 2, structure h. 

the more accurate potential. In each case there were no negative 
Hessian eigenvalues in the internal coordinate representation, and 
optimizations searching for both minima and transition states were 
therefore performed. The searches for minima simply resulted 
in collapse to one of the nearby minima. Hence we reach the 
important conclusion that the Lennard-Jones potential overes­
timates the stability of structures containing vertices of low 

connectivity. This may be ascribed to the unrealistically large 
long-range tail of the Lennard-Jones potential; the Axilrod-Teller 
form will also destabilize the acute-angled triangles formed by 
edge-bridges in edge-bridged transition states. 

Fortunately, all three of the above edge-bridging transition states 
are high lying relative to the lowest Lennard-Jones minima, so 
that they are not important in our interpretations of melting 
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Figure 3. Plot of In | £ u - £MB| against In | £ u | for the calculated energies 
of Table III. The solid circles are the minima and transition states; the 
open circles are higher order saddles and are all identified by name with 
their order in square brackets. 

processes." Furthermore, some edge-bridging structures (such 
as the edge-bridged octahedron and the edge-bridged, centered 
icosahedron) remains true transition states with the many-body 
potential. In these cases there is a 2-fold rotation axis through 
the two-connected atom, so that tangential forces on that atom 
must vanish by the same arguments as in section II. Hence, 
although the latter structures are not balanced, it is not surprising 
that they remain transition states. 

Now we consider the detailed energetic trends for the equivalent 
stationary points where they exist. The change in energy from 
the many-body to the Lennard-Jones potential (with the same 
two-body well depth) increases steadily with the Lennard-Jones 
energy, but not in a linear fashion. However, a plot of In |£L J | 
against In |£LJ - £MB | produces a reasonable fit to a straight line 
with a correlation coefficient of 0.982 for all 60 data points of 
Table III (Figure 3). The empirical relationship that may be 
deduced from this fit is 

\E*u ~ £*MBI * «V- ' | £» U | " or ]EU - Em\ « 338.4|£LJ | '
M7 

where the reduced energies are scaled by the pair potential well 
depth on the left, with /3 = 5.8242 and a = 1.307, and the energies 
are in ergs for the unsealed equation on the right calculated with 
t = 2.040 X 10"14 erg as recommended for the Barker-Pompe 
potential and used in Table III. 

AU the shifts for the many-body potential are to higher energy, 
and the three-body contributions at the new stationary points are 
all positive, except for the case of the very open heptagon. The 
percentage change in energy may also be analyzed separately for 
the minima and the transition states, and the averaged results are 
summarized in Table IV. From these we see that the percentage 
shifts are usually a little larger for the transition states of a given 
nuclearity than for the minima. Since the transition-state energies 
are numerically smaller than the energies of the corresponding 
minima, this means that conclusions about barriers deduced from 
the Lennard-Jones potential will generally be qualitatively correct. 
This reflects a balance between the two- and three-body forces. 
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Table IV. The Average Percentage Changes of Total Energy 
between the Lennard-Jones and Many-Body Potentials Described in 
the Text as a Function of Nuclearity" 

no. 
of atoms 

5 
7 
8 

13 
14 
33 
55 

% change 
(minima) 

3.0 
4.6 
5.3 
7.1 
7.5 

11.2 
11.8 

% change 
(transition states) 

3.9 
5.1 
5.6 
7.5 
7.8 

10.7 
11.9 

"The results are broken down into minima (left) and transition 
states (right). 

Table V. The Average Three-Body Energy Expressed as a 
Percentage of the Two-Body Energy for the Many-Body Potential 
Described in the Text Analyzed as a Function of Nuclearity" 

no. 
of atoms 

5 
7 
8 

13 
14 
33 
55 

IV3/ K2| X 100 
(minima) 

2.6 
3.0 
3.1 
4.0 
4.3 
4.7 
5.1 

IV1/ K2| X 100 
(transition states) 

2.2 
2.8 
3.0 
3.8 
3.9 
4.5 
5.1 

"The results are broken down into minima (left) and transition 
states (right). 

We can also analyze the three-body contribution to the total 
energy as a percentage of the two-body energy according to nu­
clearity and the order of the stationary points (Table V). The 
results are in good agreement with those of Etters and Danilowicz30 

for the minima, rising from around 2.6% for Ar5 to 5.1% for Ar55. 
The percentage rises with increasing nuclearity because surface 
effects become progressively less important. The presence of the 
surface reduces the number of three-body terms more than the 
number of two-body terms, and so the bulk percentage contribution 
of around 10% is only approached for larger clusters. The average 
percentage is always somewhat smaller for transition states then 
minima, because the more open transition-state geometries affect 
the three-body terms more than the two-body terms. 

V. Discussion 
Having examined some balanced structures in detail and the 

effect of including three-body terms for a wide range of small and 
intermediate sized argon clusters, we now turn to some qualitative 
discussions of the relationships between cluster structures and 
potentials. To do this we must examine not only balanced 
structures, and the changes in the order of these stationary points 
in different systems, but also minima that are not balanced ge­
ometries. Carbon compounds provide a simple example. Stable 
species, such as cubane and dodecahedrane, are systems in which 
each carbon atom is essentially tetravalent, and therefore we expect 
these balanced structures to be minima. In contrast, the trigonal 
bipyramidal structures C5H5

+ and C5H5" are saddles of order five 
(see Table I). The structural relationships revealed for boro-
hydrides, argon clusters, and "trapped ion" clusters are rather more 
interesting, especially as we would also like to extend this discussion 
to the more complex problem of the bonding in transition-metal 
clusters. 

Deltahedra, where all the faces are triangular, are clearly the 
most important structures for borohydrides, "trapped ion" clusters, 
and argon clusters, as well as for many transition-metal clusters. 
In the case of argon and transition-metal clusters minima generally 
have centered geometries, but this is never the case for boro­
hydrides or carboranes. For "trapped ion" clusters minima are 
sometimes possible with or without a central atom being present 
if the system is sufficiently large.18 However, the unbalanced 
structures exhibited by these systems may be different. For 
example, the dodecadeltahedron is a minimum for B8H8

2" and Ar8 

and a transition state for (Be+)'8, whereas the square-antiprism 
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is a minimum for (Be+V8 and an order two saddle8 for B8H8
2". 

Furthermore, the Dih bicapped pentagonal prism and the cu-
boctahedron are true transition states for icosahedral (Be+)',2 and 
centered icosahedral (Be+)'3, but not for BnHi2

2" and Ar13. 
Argon clusters are the easiest to understand. Here the most 

important factor is connectivity, and the maximization of coor­
dination number leads to deltahedral minima for small clusters 
and centered deltahedral structures for larger species. The latter 
can also be described as polytetrahedral structures, which are 
commonly observed for transition-metal clusters too, as Johnson 
and Woolley have noted.31 The principle of maximization of 
coordination number may also be responsible for the favorable 
Mackay icosahedral morphologies32 of colloidal gold and silver 
particles, as discussed elsewhere.33 By using appropriate 
transformations within a molecular orbital framework it is possible 
to show that the spectrum of molecular orbitals is wider for 
structures of higher connectivity.33 Although this is only a 
qualitative argument, and other factors are also involved, con­
nectivity is clearly of great importance for many covalent and van 
der Waals clusters. We will return to this point below. 

First, however, it is important to note the difference between 
deltahedral covalent and van der Waals clusters and "trapped ion" 
clusters, namely that in "trapped ion" clusters the ions explicitly 
repel rather than attract one another. In "trapped ion" clusters 
there is therefore a driving force to maximize the inter-ion dis­
tances in the surface while minimizing the average radius of the 
shell of atoms. Although deltahedra maximize the number of 
nearest neighbor contacts they also provide the most effective 
coverage of a spherical surface and therefore minimize the shell 
radius for a given nearest-neighbor separation. Another important 
factor is that the bare Coulombic repulsion of the trapped ions 
is significantly longer ranged that the Lennard-Jones potential, 
and presumably the effective interatomic forces in covalent 
clusters. Hence, although deltahedra maximize the number of 
nearest neighbors they have relatively large second-nearest-
neighbor distances. Overall, deltahedral geometries can therefore 
be the optimal solutions to both the attractive Lennard-Jones 
packing problem and the repulsive "trapped ion" cluster problem. 

The non-deltahedral "trapped ion" clusters illustrate the delicate 
balance of forces for these systems, where square faces appear 
to be much more favorable than for argon clusters or borohydrides. 
In the latter molecules, which must be described by relatively 
shorter range attractive effective potentials, square faces will 
generally raise the energy. However, in "trapped ion" clusters 
the balance between the Coulombic repulsion (which favors square 
over triangular faces) and the average radius appears to be more 
delicate. This explains why diamond-square-diamond processes3 

are often so facile in these systems.''18 

Finally we should ask why centered polytetrahedral geometries 
are often favorable for argon14 and transition-metal clusters,34 

whereas non-centered deltahedra are generally favored for bo­
rohydrides and hydrocarbon clusters.34 The answer to this problem 
has already been discussed in terms of bonding theories for 
transition-metal and main-group clusters;35 however, our object 
here is to try and understand the trends in terms of effective 
potential functions. Argon clusters probably provide the simplest 
examples, and the prevalence of icosahedral packing schemes has 
been interpreted in terms of the isotropic well pair potential.33 It 
seems likely, then, that the deltahedral single-shell structures 
exhibited by borohydrides and carboranes can be rationalized in 
terms of a relatively isotropic effective potential in the surface 
of the sphere, but with a directional radial component. 

To test this hypothesis potential surfaces were calculated for 
the angular displacement of a single CH or BH unit in prismane, 

(31) Johnson, B. F. G.; Woolley, R. G. J. Chem. Soc., Chem. Commun. 
1987, 634. 

(32) Mackay, A. C. Ada Crystallogr. 1962, 15, 916. 
(33) Wales, D. J.; Kirkland, A. I.; Jefferson, D. A. J. Chem. Phys. 1989, 

91, 603. 
(34) See, for example: Cotton, F. A.; Wilkinson, G. Advanced Inorganic 

Chemistry, 5th ed.; John Wiley: New York, 1988. 
(35) Wales, D. J. MoI. Phys. 1989, 67, 303. 

70' 90' B 110' 

Figure 4. Potential energy surfaces for the angular displacement of the 
(6,<t>) = (48.31°,0°) CH unit in prismane (top) and the (90°,0°) BH unit 
in B6H6

2" (bottom). The energy range for prismane is 7.6 eV with 
contours spaced at intervals of 0.27 eV, and the corresponding parameters 
for B6H6

2" are 4.8 and 0.24 eV, respectively. The axis systems and 
skeletal vertices that are displaced are indicated schematically in each 
case. The grid spacings are 2.5° x 2.67° and 2.5° x 2.5°, respectively, 
giving 272 and 289 data points for the two plots. 

C6H6, and B6H6
2", respectively. The SCF energy was calculated 

over a grid of angular 6,<j> displacements starting from the 
equilibrium optimized STO-3G geometries. For prismane the 
angular coordinates of the chosen CH unit were (0,0) = 
(48.31°,0°); the constant radii were 1.170 and 2.251 A for carbon 
and hydrogen, respectively. For B6H6

2" the corresponding pa­
rameters of the chosen vertex were (90°,0°) withrB = 1.1894 A 
and rH = 2.3491 A. These parameters uniquely define the 
equilibrium geometries. In both cases 8 and 0 were varied through 
±20° except that symmetry equivalent geometries were not re­
peated. The axis systems and calculated surfaces are shown in 
Figure 4, where we see that the B6H6

2" surface is indeed re­
markably isotropic in terms of angular displacements. This is not 
the case for prismane, where the energy increases more rapidly 
when we stretch or compress the axial C-C bond by changing 6. 
The energy changes least rapidly for displacements of the </> co­
ordinate with a corresponding small increase in B (which helps 
to preserve the axial C-C bond). These results agree very well 
with theoretical descriptions of cluster bonding where delocalized 
systems such as B6H6

2" are treated by separating the radial and 
tangential basis atomic orbitals.35'36 Systems that can be un­
derstood in terms of localized two-electron bonds clearly have 
anisotropic potential surfaces for angular displacements of the 
vertices. 

The above discussions are intended to provide some qualitative 
explanations for the sort of trends observed in the various types 

(36) Stone, A. J. MoI. Phys. 1980, 41, 1339. 
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of cluster discussed in this paper. In particular, explanations 
framed in the language of effective potentials for covalent clusters, 
using analogies with other, simpler systems, provide an alternative 
way of looking at the structures of these molecules. More 
quantitative analyses may also be possible in future work. Bal­
anced structures provide a particularly helpful set of examples 
because we know in advance that they must be stationary points 
of some order, and the variation of the order with the type of 
potential may be most illuminating. Furthermore, balanced 
structures suggest possible structures for new stable species; for 
example, it would be interesting to investigate icosidodecahedral 

I. Introduction 
Long-distance electron transfer in proteins involves electron 

tunneling through a polypeptide environment.1 Although do­
nor-acceptor electronic interactions in many proteins are relatively 
weak, they are not as weak as would be expected in the absence 
of the polypeptide bridge.2 Theory suggests that the transfer rate 
should be sensitive to the molecular details of the tunneling bridge 
in a weakly coupled donor-acceptor molecule and that a molecular 
orbital approach is an appropriate one.3 

Methods to calculate weak bridge-mediated donor-acceptor 
interactions have been of interest for some time in chemistry.1'2 

We recently developed a model for the dependence of the do­
nor-acceptor coupling and transfer rate on bridge structure in 
small molecules28,4 and proteins.5 While refinements5b are being 
added to the protein model (questions still remain concerning 
details of the electronic structure techniques5* and the density of 
important pathways, see next section), the model provides a 
framework for the interpretation and design of experimental 
systems. 

In this paper we present a numerical implementation of our 
theoretical model for electron tunneling in proteins. The model 
divides the bridge that assists the electron-tunneling process into 
a number of blocks. The decay of the interaction across each block 
is sufficiently rapid that the overall coupling can be approximated 
as a product of decays per block where these decays depend only 

* Jet Propulsion Laboratory, California Institute of Technology. 
* Beckman Institute, California Institute of Technology. _ 
* University of California, San Diego, and Instituto de Fisica e Quimica 

de Sao Carlos. 
1 Present address: Department of Chemistry, University of Denver, Denver, 
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B30H30
2 , or even C30, to see if this structure is ever a minimum 

or a transition state. 
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on the details of the particular block and the tunneling energy.5 

This approximation is an oversimplification based in perturbation 
theory, and strategies to generalize this treatment are discussed 
in the following sections. The description of the bridge as a 
combination of identifiable blocks is a useful one that applies even 
beyond the perturbation theory limit.6 This is a central theme 
of our model, and future implementations that take more details 
of the bridge into account will be based on this description. 

These blocks of orbitals between donor and acceptor define 
pathways that mediate electron transfer. Due to the approximately 
exponential decay of the coupling with the number of bridging 
groups in a tunneling pathway, one expects relatively few pathways 
to be important for coupling the donor and acceptor in a given 
protein or protein-protein complex. If gating of the electron-
transfer reaction7 becomes important, the calculation of the 
tunneling matrix element for the relevant pathway must be 

(1) (a) Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta 1985, 811, 265. 
(b) Newton, M. D.; Sutin, N. Annu. Rev. Pkys. Chem. 1984, 35, 437. (c) 
Photoinduced Electron Transfer, Fox, M. A., Chanon, M., Eds.; Elsevier: 
Amsterdam, 1988; Vols. A-D. 

(2) (a) Halpern, J.; Orgel, L. E. Discuss. Faraday Soc. 1960, 29, 32. (b) 
McConnell, H. M. J. Chem. Phys. 1961, 35, 508. (c) Hopfield, J. J. Proc. 
Natl. Acad. Sci. U.S.A. 1974, 71, 3640. (d) Larsson, S. J. Am. Chem. Soc. 
1981,103,4034. (e) Beratan, D. N.; Hopfield, J. J. J. Am. Chem. Soc. 1984, 
106, 1584. (f) Riemers, J. R.; Hush, N. S. Chem. Phys. 1989, 134, 323. 

(3) Beratan, D. N.; Onuchic, J. N.; Hopfield, J. J. J. Chem. Phys. 1985, 
83, 5325. 

(4) (a) Onuchic, J. N.; Beratan, D. N. J. Am. Chem. Soc. 1987,109, 6771. 
(b) Beratan, D. N. J. Am. Chem. Soc. 1986, 108, 4321. 

(5) (a) Beratan, D. N.; Onuchic, J. N.; Hopfield, J. J. J. Chem. Phys. 
1987,86,4488. (b) Onuchic, J. N.; Beratan, D. N. J. Chem. Phys. 1990, 92, 
722. (c) Beratan, D. N.; Onuchic, J. N. Photosynth. Res. 1989, 22, 173. 
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Abstract: We implement a numerical algorithm to survey proteins for electron-tunneling pathways. Insight is gained into 
the nature of the mediation process in long-distance electron-transfer reactions. The dominance of covalent and hydrogen 
bond pathways is shown. The method predicts the relative electronic couplings in ruthenated myoglobin and cytochrome c 
consistent with measured electron-transfer rates. It also allows the design of long-range electron-transfer systems. Qualitative 
differences between pathways arise from the protein secondary structure. Effects of this sort are not predicted from simpler 
models that neglect various details of the protein electronic structure. 
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